The CD40–CD40L Dyad in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis
نویسندگان
چکیده
The CD40-CD40L dyad is an immune checkpoint regulator that promotes both innate and adaptive immune responses and has therefore an essential role in the development of inflammatory diseases, including multiple sclerosis (MS). In MS, CD40 and CD40L are expressed on immune cells present in blood and lymphoid organs, affected resident central nervous system (CNS) cells, and inflammatory cells that have infiltrated the CNS. CD40-CD40L interactions fuel the inflammatory response underlying MS, and both genetic deficiency and antibody-mediated inhibition of the CD40-CD40L dyad reduce disease severity in experimental autoimmune encephalomyelitis (EAE). Both proteins are therefore attractive therapeutic candidates to modulate aberrant inflammatory responses in MS. Here, we discuss the genetic, experimental and clinical studies on the role of CD40 and CD40L interactions in EAE and MS and we explore novel approaches to therapeutically target this dyad to combat neuroinflammatory diseases.
منابع مشابه
CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis.
We investigated the role of CD40-CD40 ligand (CD40L) interactions in multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). Activated helper T cells expressing CD40L (gp39) surface protein were found in MS patient brain sections, but not in brain tissue sections of normal controls or patients with other neurological disease. CD40L-positive cells were co-localized with CD40-b...
متن کاملMechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis.
Relapsing experimental autoimmune encephalomyelitis (R-EAE) in the SJL mouse is a Th1-mediated autoimmune demyelinating disease model for human multiple sclerosis and is characterized by infiltration of the central nervous system (CNS) by Th1 cells and macrophages. Disease relapses are mediated by T cells specific for endogenous myelin epitopes released during acute disease, reflecting a critic...
متن کاملImmunomodulatory Effect of Mesenchymal Stem Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: A Review Study
Multiple Sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system that may lead to disability of the patient. Current MS treatment regimens are still insufficient and research is conducted for developing more effective therapies capable of targeting neurodegeneration, inflammation, and demyelination. Recent results of experimental and clinical studies in ...
متن کاملInhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis
Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...
متن کاملEffects of Coenzyme Q10 on the ratio of TH1/TH2 in Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis in C57BL/6
Background: Multiple sclerosis (MS) is known as a progressive central nervous system inflammatory disease. Certain factors, such as interleukins, inflammatory cells, and oxidative stress are supposed to involve in MS etiology. Because of the important role of oxidative stress, antioxidant therapy for MS has received more attention. Although coenzyme Q10 (CoQ10) acts as an antioxidant, there is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017